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Abstract

Sulfuric acid, amines and oxidized organics have been found to be important com-
pounds in the nucleation and initial growth of atmospheric particles. Because of the
challenges involved in determining the chemical composition of objects with very small
mass, however, the properties of the freshly nucleated particles and the detailed path-
ways of their formation processes are still not clear. In this study, we focus on a
challenging size range, i.e. particles that have grown to diameters of 10 and 15nm
following nucleation, and measure their water uptake. Water uptake constrains their
chemical composition. We use a nanometer-hygroscopicity tandem differential mo-
bility analyzer (nano-HTDMA) at subsaturated conditions (ca. 90 % relative humid-
ity at 293 K) to measure the hygroscopicity of particles during the seventh Cosmics
Leaving OUtdoor Droplets (CLOUD7) experiments performed at CERN in 2012. In
CLOUD?7, the hygroscopicity of nucleated nanoparticles was measured in the pres-
ence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived
from a-pinene oxidation. The hygroscopicity parameter « decreased with increasing
particle size indicating decreasing acidity of particles. No clear effect of the sulfuric
acid monomer concentrations on the hygroscopicities of 10 nm particles produced from
sulfuric acid and dimethylamine was observed, whereas the hygroscopicity of 15nm
particles sharply decreased with decreasing sulfuric acid monomer concentrations. In
particular, when the concentrations of sulfuric acid was 5.1 x 10° moleculescm™ in
the gas phase, and the dimethylamine mixing ratio was 11.8 ppt, the measured « of
15nm particles was 0.31 £ 0.01 close to the value reported for dimethylamine sulfate
(DMAS) (kpmas ~ 0.28). Furthermore, the difference in « between sulfuric acid and sul-
furic acid-dimethylamine experiments increased with increasing particle size. The «
values of particles in the presence of sulfuric acid and organics were much smaller
than those of particles in the presence of sulfuric acid and dimethylamine. This sug-
gests that the organics produced from a-pinene ozonolysis play a significant role in
particle growth already at 10 nm sizes.
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1 Introduction

Aerosol particles can be directly emitted into the atmosphere from natural and anthro-
pogenic sources (primary aerosols) or can be produced by gas-to-particle conversion
process (secondary aerosols). They affect regional and global climate by absorbing
and scattering light and by acting as cloud condensation nuclei (CCN) and ice nu-
clei (IN). Although physical and chemical properties of atmospheric aerosol particles
have been widely studied, large uncertainties remain, both in their direct and indirect
climate effects (IPCC, 2013). Hygroscopicity, the ability of particles to take up water,
is important when considering climate effects, and can usefully constrain the chemical
composition of size-resolved nanoparticles (Riipinen et al., 2009; Ristovski et al., 2010;
Sakurai et al., 2005).

Experimental and theoretical studies have shown that sulfuric acid is an important
ingredient in particle formation (Kulmala et al., 2004; Weber et al., 1997). It has also
been shown that new particle formation in the boundary layer cannot be explained by
pure sulfuric acid-water nucleation (Kirkby et al., 2011). Other compounds such as am-
monia and/or organics are needed to explain observed atmospheric particle formation
and growth, and have thus been widely studied. Much of the recent focus has been
on the effect of amines on particle formation. Both experimental and computational
studies have indicated that amines enhance particle formation significantly more than
ammonia (Almeida et al., 2013; Barsanti et al., 2009; Berndt et al., 2010; Bzdek et al.,
2010; Erupe et al., 2011; Kurtén et al., 2008; Kirten et al., 2014; Loukonen et al., 2010;
Paasonen et al., 2012; Pratt et al., 2009; Zhao et al., 2011). Moreover, alkylaminium
salts in atmospheric particles with sizes of 8—10 nm have been observed during new
nanoparticle formation events (Smith et al., 2010). Still, physicochemical properties of
nanoparticles produced by homogeneous nucleation of amines with sulfuric acid-water
and their subsequent growth are not yet well understood.

Both laboratory experiments and field observations have shown that organic com-
pounds play important roles in atmospheric particle formation and growth and make up
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a large fraction of the submicron aerosol mass (Hallquist et al., 2009; Jimenez et al.,
2009; Metzger et al., 2010). Most chamber studies have focused either on secondary
organic aerosol (SOA) mass yields or on identifying and quantifying the compounds
produced from oxidation (Griffin et al., 1999; Hao et al., 2011; Hennigan et al., 2011;
Kroll et al., 2005). Chemical aging processes with various oxidants have also been
studied (Donahue et al., 2012; Henry and Donahue, 2012; Henry et al., 2012; Pierce
et al., 2011; Yasmeen et al., 2012). Several useful studies also have been performed
on the hygroscopic properties of SOA produced either in laboratory or in the atmo-
sphere, including the effect of oxygen-carbon (O:C) ratio on hygroscopicity (Chang
et al., 2010; Duplissy et al., 2011; Engelhart et al., 2008; Frosch et al., 2011; Jimenez
et al., 2009; Lambe et al., 2011; Massoli et al., 2010; Roberts et al., 2010; Sjogren
et al., 2008; Varutbangkul et al., 2006; Virkkula et al., 1999). Jimenez et al. (2009) and
Duplissy et al. (2011) found that hygroscopicity of SOA increased with increasing ox-
idation level at subsaturated conditions (ca. 90-95 % RH), while Frosch et al. (2011)
showed that the relationship between the hygroscopicity of particles with diameters in
the 59—200 nm range and O: C ratio in the 0.3-0.6 range was weak at supersaturated
conditions. Massoli et al. (2010) reported that the hygroscopicity parameter increased
with oxidation level both in subsaturated and supersaturated conditions. Although many
studies on physical and chemical properties of SOA have been performed, there are
still significant gaps in our understanding of the detailed initial growth pathways, and of
the properties of freshly nucleated nanoparticles.

In this study, we focus on determining the hygroscopicity of nanoparticles gener-
ated by homogeneous nucleation of sulfuric acid with organic compounds such as
dimethylamine and a-pinene oxidation products in the CLOUD chamber at CERN. The
measurements were performed with a nanometer-hygroscopicity tandem differential
mobility analyzer (nano-HTDMA) (Keskinen et al., 2011) during the CLOUD7 exper-
iments. Volume fractions of inorganic sulfates and dimethylamine sulfate (DMAS) in
the nanoparticles were estimated from nano-HTDMA results and Zdanovskii—Stokes—
Robinson (ZSR) relation (Choi and Chan, 2002; Kim et al., 2011; Meyer et al., 2009;
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Petters and Kreidenweis, 2007). Moreover, simulation results from thermodynamic
phase equilibrium model E-AIM (Extended Aerosol Inorganics Model; Clegg et al.,
1992; Ge et al., 2011; Wexler and Clegg, 2002; http://www.aim.env.uea.ac.uk/aim/aim.
php) were combined to provide further information on chemical properties of nucleated
nanoparticles.

2 Experimental methods
2.1 CLOUD chamber

The experiments were carried out with the CLOUD chamber at CERN which has been
described by Kirkby et al. (2010) and Almeida et al. (2013). In brief, the CLOUD cham-
ber is a cylindrical electropolished stainless steel tank with a volume of 26.1 m>. An
ultraviolet (UV) light system which can control the aperture of the UV light (Kupc et al.,
2011) and two stainless steel fans for mixing vapors (Voigtldnder et al., 2012) are in-
stalled in the chamber. During CLOUD7 experiments, temperature and relative humid-
ity in the chamber were constant at 278 K (£0.5K) and 38 % (+1 %), respectively. The
experiments could be classified into three groups depending on the nucleation condi-
tions; neutral (N), ground-level galactic cosmic rays (GCR), and charged pion beam
(m). In the neutral nucleation experiments, small ions in the chamber were removed
with electric fields (£20kV m‘1). The chamber was exposed to a positively-charged
pion beam (Duplissy et al., 2010) during the charged pion beam nucleation experi-
ments, whereas no electric clearing fields and no pion beam were used at GCR con-
dition. Precursor vapors such as sulfur dioxide (SO,), dimethylamine ((CH3),NH), and
a-pinene (C49H4g) were continuously provided into the CLOUD chamber to produce
particles.

Size distributions of particles produced in the chamber were continuously monitored
with a scanning mobility particle sizer (SMPS). Sulfuric acid concentration was mea-
sured using a chemical ionization mass spectrometer (CIMS) (Kurten et al., 2011),
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concentrations of dimethylamine, ammonia, and a-pinene were observed with a proton
transfer reaction-time-of-flight mass spectrometer (PTR-TOF-MS) (Schnitzhofer et al.,
2014). The concentrations of SO, and O5 were also continuously measured by a SO,
detector (42i-TLE, Thermo Fisher Scientific, Inc.) and an O3 monitor (TEI 49C, Thermo
Environmental Instruments), respectively. The detailed experimental conditions per-
formed in this study can be seen in Table 1.

2.2 Nano-HTDMA

The nano-HTDMA system (Keskinen et al., 2011) was applied to determine hygro-
scopic growth of nucleated nanoparticles at a constant subsaturated relative humidity.
It consisted of two different mobility analyzers (DMA1 and DMA2; TSI 3085, USA)
(Chen et al., 1998), an aerosol humidifier, and a condensation particle counter (CPC;
TSI 3785, USA), as shown in Fig. 1. The TDMA measurement technique has been
described in previous studies (McMurry and Stolzenburg, 1989; Hameri et al., 2000;
Sakurai et al., 2005). Briefly, nanoparticles generated in the CLOUD chamber were
dried to about 10-15 % RH, and then passed through a bipolar diffusion charger (85Kr,
TSI) before entering the nano-HTDMA system. The nanoparticles with a certain elec-
trical mobility were classified from charged polydisperse aerosols by DMA1. The RH of
aerosol sample after passing through DMA1 was ~ 4.5 %. The selected nanoparticles
passed through the aerosol humidifier made from GoreTex tubing with a 5 s residence
time at the targeted RH. This residence time should be enough for the particle to reach
their equilibrium GF (Duplissy et al., 2009). The relative humidity (RH) of the aerosol
flow, the sheath air, and the excess air in DMA2 were continuously monitored using
capacitive RH sensors (Vaisala model HMP 110). The RH was kept constant to within
1.5% of the set values. After humidifying, the size and number concentration of the
particles were measured with DMA2 and CPC to determine the change in particle size
due to interaction with water vapor. Based on these results, log-normal number size
distributions were fitted to the distributions to estimate the geometric mean diameter
(GMD) with a standard DMA data inversion algorithm (Reischl, 1991). The use of GMD
19809
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15

is relevant for this study as the sampled aerosol were internally mixed. In this study, the
measurements were performed at 90 + 1.5 % RH for 10 and 15 nm particles. The flow
rate of the aerosol sample was 1 Lmin~". The ratio of sample aerosol flow to sheath
air flow of the DMA was 1:10. The calibration of the nano-HTDMA was carried out
by using sodium chloride and ammonium sulfate nanoparticles before and after the
CLOUD7 experiments.

3 Data analysis and theory
3.1 Hygroscopic growth factor and hygroscopicity parameter «

The hygroscopic growth factor (HGF) is a measure of the diameter growth of the size-
selected particles at a certain RH compared with dry conditions, and is defined as:

dp,amp(RH)

HGF =
dpamp(dry)

(1)

where d, omp(RH) is the geometric mean diameter (GMD) of the particles at the ele-
vated RH (ca. 90 %) and d, gup(dry) is the GMD for particles at dry conditions (~ 4.5 %
RH).

In many cases it is useful to represent hygroscopic properties with a single hygro-
scopicity parameter «, defined by Petters and Kreidenweis (2007):

K.
K=(HGF3—1)(—9—1) @)
S
where S is the saturation ratio (S = %) and K, the Kelvin factor, defined as below:
4M,,0,
K,=e — ). 3
e = €Xp <RT,0de> ()
19810
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Here M,, is the molecular weight of water, ¢,, the surface tension of the water, R the
ideal gas constant, T the temperature, p,, the density of water, and d, the diameter after
humidification (dj, gmp(RH) = dj, gmp(dry) x HGF). The « values are in the range from
zero for insoluble particles such as black carbon to larger than one for water soluble
salt particles (Juranyi et al., 2009; Petters and Kreidenweis, 2007).

In order to obtain indirect chemical composition information from the nano-HTDMA
results in experiments B-D (Table 1), we use the Zdanovskii—Stokes—Robinson (ZSR)
relation that assumes that the water uptake volume of a mixture is the independent sum
of the water uptake volume of each individual component. The organic volume fraction
can then be estimated by assuming a two-component system consisting of organic and
inorganic sulfate as (Keskinen et al., 2013):

(K = Kinorg)

Kpmas — Kinorg)

(4)

€pmas = (

where k is the hygroscopicity obtained from the nano-HTDMA measurements, kpyas
and Kinorg are hygroscopicity parameters for dimethylamine sulfate (DMAS) and inor-
ganic sulfates, respectively. In this study, we assumed that the inorganic sulfates in the
particles are sulfuric acid and ammonium sulfate. Although ammonia was not injected
in the chamber during these experiments, measurements by the Thermal Desorption
Chemical lonization Mass Spectrometer (TDCIMS; Smith et al., 2004) showed that
ammonium is a significant constituent of 5-20 nm particles during these new particle
formation events (Lawler et al., 2015). To obtain better approximation of DMAS vol-
ume fraction, we assumed that inorganic sulfates also consist of ammonium sulfate in
addition to sulfuric acid. Keskinen et al. (2013) showed that hygroscopic properties of
particles at a diameter of 150 nm in the presence of sulfuric acid and ammonia are in
good agreement with theoretical predictions of ammonium sulfate. The ki, values of
sulfuric acid and ammonium sulfate were assumed as 0.70 (Sullivan et al., 2010) and
0.47 (Topping et al., 2005), respectively. The kpyag Was assumed as 0.28 derived from
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hygroscopic growth factors for dry diameters 80—240 nm measured by Qiu and Zhang
(2012).

3.2 Thermodynamic equilibrium modeling

The E-AIM was used to estimate molecular ratio of base and acid for particles con-
sisting of sulfuric acid, dimethylamine, and ammonia. In the model, acid deprotonation
and base protonation are taken into account in the aqueous phase. Sulfuric acid is
a strong acid and is assumed to deprotonate at least singly when present in aqueous
solutions. It may also deprotonate a second time to form sulfate ions. Dimethylamine
and ammonia are bases that have a single protonation product. Mole fractions of the
deprotonated acids and protonated bases are estimated using the acid dissociation
constants of the compounds defined in E-AIM (Ge et al., 2011). The density of the
aqueous solution in the model is parameterized according to Clegg et al. (2013) and
surface tension is obtained from measurements by Hyvérinen et al. (2004). The E-AIM
does not take into account the surface curvature of particles. Thus, when estimating
the water uptake of a nanoparticle with a certain dry size and composition, the equi-
librium vapor pressure for water vapor obtained from E-AIM needs to be corrected for
the Kelvin effect by multiplying with the Kelvin term, which requires iterating to find the
equilibrium.

Based on the TDCIMS observation (Lawler et al., 2015), we assumed that particles
consisted of sulfuric acid, dimethylamine, and ammonia and that the base in the par-
ticle consisted of 50 % dimethylamine and 50 % ammonia. Also, we assumed that no
particle evaporation took place in the sampling lines or in the instrument. The assump-
tion was tested by modelling the particle evaporation in the sampling lines and inside
the HTDMA and based on the model results the evaporation was negligible (Ahlm et al.,
2015). By calculating the water uptake (and the resulting HGF) in E-AIM for particles
of different base/acid molecular ratios, the composition of the particles could be esti-
mated.
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4 Results and discussion

4.1 The role of dimethylamine or a-pinene secondary organic compounds in
hygroscopicities of nucleated nanoparticles

In this section, the role of dimethylamine or a-pinene secondary organic compounds
in defining the hygroscopicities of nanoparticles is investigated (Exp. A and D—F). The
concentrations of sulfuric acid, dimethylamine, and a-pinene in the chamber for the
different experiments are shown in Table 1. The k values of 10 and 15nm particles
produced by sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics are
shown in Fig. 2. In Exp. A, the hygroscopicities of particles in the presence of sulfuric
acid only were examined. The « values (+ standard deviation) of nucleated nanoparti-
cles were 0.64+0.02 and 0.52+0.02 for 10 and 15 nm, respectively (the HGF of 10 and
15 nm particles were 1.55 £ 0.02 and 1.56 + 0.02, as shown in Table 1). Here the error
bars represent the standard deviation of the measurements from the mean value. The
k values are slightly lower than previous results for sulfuric acid («,so, ~ 0.7) reported
elsewhere (Shantz et al., 2008; Sullivan et al., 2010). Also, the theoretical values for
Kn,so, corresponding to our experimental conditions and calculated by E-AIM is 1.1
(at RH 90 %). The reason for the lower measured « values of the nucleated nanopar-
ticles can be twofold: (1) existence of trace levels of contaminants such as ammonia
and dimethylamine in the chamber, and/or (2) residual water in the nanoparticle after
passing through DMA1. Although we supplied only sulfuric acid to the chamber and
an overnight cleaning cycle (100°C for 12h) was performed to remove contaminants
before experiments, the Atmospheric Pressure interface Time-Of-Flight mass spec-
trometer (APi-TOF) measurements showed that trace levels of ammonia and dimethy-
lamine still remained in the clusters (< 2nm) (Bianchi et al., 2014) most probably due
to wall adsorption from previous experiments. Ammonia and dimethylamine were also
found in the nanoparticles (< 40 nm) from TDCIMS measurement (Lawler et al., 2015).
This observation suggests that trace levels of these ammonia and dimethylamine in
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the chamber may be present in the nucleated nanoparticles, hence decreasing the «
values.

The hygroscopic properties of nucleated nanoparticles in the presence of sulfuric
acid and dimethylamine were determined in Exp. D. Although dimethylamine was con-
tinuously supplied into the chamber to maintain a concentration of 23.8 ppt, the ob-
served k values for 10 nm particles agree to within 4 % with the results for particles in
the presence of sulfuric acid, as can be seen in Fig. 2. In the case of the 15 nm parti-
cles, however, the hygroscopicities of sulfuric acid-dimethylamine particles were 12 %
lower than those for sulfuric acid particles. This decline of hygroscopicity for 15 nm par-
ticles is probably caused by an increasing amount of aminium salts during the growth
process. E-AIM model results show that the observed increases in k values could be
explained by decreasing particle acidity with increasing particle size as shown in Ta-
ble 2. Our results indicate that the ratio of dimethylamine to sulfuric acid increases
when particles grow from 10 to 15 nm. It should be noted that the monodisperse parti-
cle growth model, MABNAG, predicts lower acidity in the 10 and 15 nm particles than
do the HTDMA-based estimates under the same experimental conditions (Ahlm et al.,
2015). The reason for this discrepancy is still unknown; it may be related to measure-
ment uncertainties at the 10 and 15 nm size range, or to the incomplete understanding
of the growth process of particles formed from sulfuric acid and dimethylamine. Chan
and Chan (2013) observed evaporation of dimethylamine from aminium sulfate parti-
cles upon drying at 3% RH using an electrodynamic balance. Ouyang et al. (2015)
also concluded that dry particles consisting of dimethylamine and sulfuric acid in the
size range 5-8.5 nm would be unstable under ambient conditions. In our HTDMA mea-
surements the particles were dried before measuring the growth factor, so therefore
some of the dimethylamine may have evaporated from the particles prior to growth fac-
tor measurements, increasing the acidity of the particles. Based on the thermodynamic
condensation model simulation, the base/acid molar ratio may have decreased in the
sampling line as much as 15 % (in the experiment with 40 ppt of dimethylamine) (Ahim
et al., 2015) compared to the value in the chamber. However, the difference between
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the base/acid ratio of growing particles predicted with the model and that derived from
measured growth factors is much larger than this. It is, therefore, unlikely that evapora-
tion of dimethylamine alone would explain this discrepancy.

We also investigated the hygroscopicities of nanoparticles produced in the chamber
in the presence of a-pinene, sulfuric acid, and O3 (Exp. E and F). In these experiments,
hydrogen (H,) was added to suppress OH radical from a-pinene oxidation in order to
probe the role of ozonolysis on new particle formation (Praplan et al., 2015). Although
the concentrations of sulfuric acid were higher during the sulfuric acid-organics exper-
iments than during the sulfuric acid-dimethylamine experiments, the HGFs of particles
in the presence of sulfuric acid and organics were much smaller than those of parti-
cles in the presence of sulfuric acid and dimethylamine, as can be seen in Table 1.
As shown in Fig. 2, the hygroscopicity of 10 nm particles when a-pinene ozonolysis
products are present is significantly lower that observed in the sulfuric acid or sulfu-
ric acid-dimethylamine experiments; moreover it decreases with increasing size. It has
previously been reported that the hygroscopicity of organics from a-pinene oxidation
is clearly lower than the hygroscopicity of sulfuric acid (or ammonia-containing sulfate
compounds) (Qiu and Zhang, 2012; Massoli et al., 2010). Hence, the present results
indicate that the organic-oxidation products contribute significantly to the composition
of both 10 and 15 nm particles, and, thereby, to their growth.

4.2 The effect of sulfuric acid concentration on hygroscopicity of particles in
the presence of sulfuric acid and dimethylamine

We also investigated the effect of sulfuric acid concentration on the hygroscopicity of 10
and 15 nm particles (Exp. B-D) when while SO, and dimethylamine were continuously
added to the chamber during the analysis period, at a constant paste, the UV light
intensity was varied during the course of the experiment by changing the light aper-
ture. The sulfuric acid monomer concentrations at an aperture of 20, 40 and 100 %
UV were 5.1 x 106, 7.6 x 106, and 12.3 x 10° moleculescm_s, respectively; in the dis-
cussion that follows we will refer to these concentrations as low, medium, and high,
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respectively. The growth rate (GR) of particles from 4 to 15nm diameter increases
from 2.35 to 8.41nmh™" with increasing sulfuric acid concentration from 5.1 x 10° to
12.3 x 10° moleculescm™>. The large increase in the GR is probably due to a com-
bination of the enhanced kinetic condensation of sulfuric acid (and dimethylamine)
molecules and the increase in the number concentration of the formed particles, en-
hancing growth by coagulation (Ahlm et al., 2015). However, there were no remarkable
differences among the hygroscopicities of 10 nm particles, as shown in Fig. 3a. The k
values (+ standard deviation) of the 10 nm particles were 0.58 + 0.01, 0.60 £ 0.01, and
0.61 £ 0.02 for low, medium, and high, respectively. It suggests that the composition of
10 nm particles does not change significantly over this range of sulfuric acid gas-phase
concentrations. This is reasonable due to the excess of dimethylamine in the chamber
relative to the sulfuric acid.

In contrast to the insensitivity of hygroscopicity for 10 nm particles to sulfuric acid
levels, the hygroscopicity of 15nm particles increases with increasing sulfuric acid.
The « values (+ standard deviation) were 0.31 £ 0.01, 0.42 £ 0.02, and 0.45 + 0.02 for
low, medium, and high sulfuric acid, respectively. Especially, the « value for low sulfuric
acid was close to that of DMAS at 90 % RH (kpyas ~ 0.28) (Qiu and Zhang, 2012). This
suggests that more aminium salts can be involved in 15 nm particles with decreasing
sulfuric acid concentrations. The DMAS volume fractions (+ standard deviation) derived
from Eq. (4) varied from 0.28 + 0.02 to 0.20 + 0.05 for 10 nm particles and from 0.82 +
0.03 to 0.37 £0.06 for 15 nm particles depending on the sulfuric acid concentrations
(Fig. 3b). In summary, our measurements support the view that the contribution of
dimethylamine to particle growth increases with increasing particle size.

5 Summary and conclusions

The hygroscopic properties of nucleated nanoparticles in the presence of sulfuric acid,
sulfuric acid-dimethylamine, and sulfuric acid combined with organics derived from a-
pinene ozonolysis were investigated with the nanometer-hygroscopicity tandem differ-
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ential mobility analyzer (hano-HTDMA). The hygroscopicities decreased with increas-
ing particle size, consistent with a decrease of particle acidity with increased parti-
cle size. The obtained hygroscopicity parameter « values of 10 nm particles in the
presence of sulfuric acid-dimethylamine were similar to those of particles in the pres-
ence of sulfuric acid with trace levels of contaminants within 4 % (x of sulfuric acid-
dimethylamine and sulfuric acid were 0.61 £ 0.02 and 0.64 + 0.02, respectively). For
15 nm particles, however, the hygroscopicities of sulfuric acid-dimethylamine particles
were lower by 12 % compared with results of sulfuric acid particles. This finding sug-
gests that the contribution of dimethylamine to growth increases as the particles grow
from 10 to 15nm. In the presence of sulfuric acid and organics, the HGFs were much
smaller than those in the presence of sulfuric acid and dimethylamine regardless of sul-
furic acid concentration. This is because the hygroscopicities of organics derived from
a-pinene oxidation were smaller than of dimethlyaminium sulfate and/or a-pinene oxi-
dation products contributed more to the particles mass. In contrast to the sulfuric acid-
dimethylamine experiments, hygroscopicities of 10 nm particles in sulfuric acid-organic
experiments were clearly lower than in the sulfuric acid experiments; moreover, the
hygroscopicity decreased with increasing size, indicating that the organic compounds
are able to contribute significantly to growth and composition of both 10 and 15nm
particles. This is probably due to the very low saturation vapor pressures of organic
compounds produced from a-pinene oxidation (Ehn et al., 2014).
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Table 1. Summary of the experimental conditions. The experiments were performed in the
presence of sulfuric acid (Exp. A), sulfuric acid and dimethylamine (Exp. B-D), and sulfuric
acid and organics produced from a-pinene ozonolysis (Exp. E-F). H,SO,, (CH;),NH, C;oHg,
and Oj refer to gas concentrations of sulfuric acid, dimethylamine, a-pinene, and ozone, re-
spectively. Here the error in the HGF values indicates the standard deviation for the measured
results. UV aperture indicates UV lamp aperture opening in %, which in turn provides different
UV intensities inside the chamber (Kupc et al., 2011).

No.  Experiments H,SO, (CHg),NH CyoHyg  O; UV aperture HGF
(10° moleculescm™)  (ppt) (Ppt)  (ppb) (%)  10nm 15nm
A Sulfuric acid 352 0 0 235 100 1.55+0.02 1.56+0.02
B Sulfuric acid-dimethylamine 51 118 0 23.5 20 1.49+0.01 1.36+0.01
(e} Sulfuric acid-dimethylamine 7.6 238 0 23.5 40 1.50+0.01 1.45+0.01
D Sulfuric acid-dimethylamine 123 238 0 23.5 100 1.50+0.02 1.47+0.02
E Sulfuric acid-organics | 151 0 420 225 0 1.35+0.01 1.33+0.02
F Sulfuric acid-organics I 194 0 910 23.0 0 1.31+0.01 1.29+0.01
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Table 2. Molecular ratio of base and acid compounds from E-AIM model, assuming no evapora-
tion of dimethylamine from the particles. The E-AIM results were derived from the HGF results
of particles. Based on TDCIMS measurements, we assumed that the acid compound is only
sulfuric acid and base compounds consist of 50 % ammonia and 50 % dimethylamine in the
particles.

No. Experiments Molecular ratio (base/acid)
10nm 15nm
A Sulfuric acid 0.2 1.0
D Sulfuric acid-dimethylamine 0.3 1.0
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Figure 2. Comparison of hygroscopicity («) for 10 and 15 nm particles in the presence of sulfuric
acid (Exp. A), sulfuric acid-dimethylamine (Exp. D), and sulfuric acid-organics produced by a-
pinene oxidation with OH scavenger (Exp. E-F). The theoretical « of sulfuric acid (dash dot line)
from E-AIM and « of DMAS (dash line) from Qiu and Zhang (2012) are also presented. The
a-pinene concentrations during sulfuric acid-organic | and sulfuric acid-organic Il were 420 and
910 ppt, respectively, as can be seen in Table 1. Error bars show a standard deviation from

measurements data.
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Figure 3. (a) Comparison of hygroscopicity of 10 and 15nm particles produced from sul-
furic acid and dimethylamine; (b) estimated volume fractions in the particles depending on
UV aperture (Exp. B-D). The concentrations of sulfuric acid were 5.1 x 10°, 7.6 x 10°, and
12.3 x 10° moleculescm ™2 for low, medium, and high, respectively.
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